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Abstract: Habitat mapping, physical characteristics and benthic community of a rhodolith bed in the
Pelagie Islands (Strait of Sicily, Mediterranean Sea) were studied through Multi–Beam Echo–Sounder
(MBES), Remotely Operated Vehicle (ROV) and grab samples. The geomorphological analysis
revealed an articulated and wide rhodolith bed; video inspections highlighted a bed with high
coverage, few sandy patches and with a prevalence of the boxwork morphotype. A total of 207 taxa
with 876 specimens were identified, and Polychaeta was the dominant taxon. Linguimaera caesaris,
a Lessepsian benthic amphipod, was recorded in all sampling sites, and its presence represents an
input to deepen the benthic assemblage research on the rhodolith bed. In terms of morphotype
composition, dead/live ratio and species variability, the bed variability indicated a good status of
health, although trawling signs were detected through ROV videos. The present study broadens the
knowledge on Mediterranean rhodolith beds and supports the importance of survey and monitoring
activities for the conservation and management of this important habitat.

Keywords: biodiversity; community composition; rhodolith morphotypes; habitat mapping; Lampe-
dusa Island; macroalgae; bioconstructions; Linguimaera caesaris

1. Introduction

Rhodolith beds, which also include the maërl beds, are unique bioconstructions char-
acterized by unattached non-geniculate calcareous red algae with a worldwide distribution.
Rhodolith-forming algae grow as unattached nodules, formed by at most 50% of calcareous
Rhodophyceae [1], living on the sediment in the photic zone [2]. These beds occur in
tropical, temperate and polar environments [3]. In Europe they are known along most of
the Eastern Atlantic coast, from Portugal to Norway and throughout the Mediterranean.
The depth ranges from 5 to 35 m in the Western Atlantic and at greater depths (up to 150 m)
in the Mediterranean Sea [4–7]. Mediterranean rhodolith/maërl beds, considered as “facies”
of infralittoral and circalittoral biocoenosis [8–10], were reported for almost all sectors
except for the Eastern Adriatic, Libyan, Egyptian, Syrian and Lebanon coasts; they are not
even reported in the Black Sea [4]. Rhodolith/maërl beds can be typically found around
islands and seamounts, marine terraces, channels and banks, mainly in the mesophotic
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zone. Knowledge on their distribution is not homogeneous, but is more concentrated in
some areas where specific research or monitoring activities are carried out.

In the Mediterranean Sea, rhodolith/maërl beds develop on coarse sand and fine
gravel under the influence of bottom currents in the infralittoral zone, and on the coastal de-
tritic bottom in the circalittoral zone. The algal growth in successive layers is facilitated by
continuous rotation of the biogenic concretions on a substrate influenced by currents [11,12].
Rhodolith/maërl beds show a spatial complexity with a high level of floral and faunal
biodiversity [7]; algae forming rhodoliths have been described as ecological engineers since
they create many ecological niches for different species, allowing a great deal of interstitial
life and favoring the settlement of a variety of sessile organisms and endobionts. As they
are considered both hard and soft substrata, rhodolith/maërl beds are among the most
biodiverse communities of the Mediterranean Sea after Posidonia oceanica meadows and
coralligenous habitat; they encounter about 1000 different species belonging to macroben-
thos, 70% of animals and 30% of plants [13]. Furthermore, rhodolith/maërl beds provide
nursery grounds for commercial species of fish and shellfish, maintaining sustainable
fisheries [14,15] and ensuring a wide spectrum of ecosystem goods and services [14,16].

Rhodolith/maërl beds are considered to be a non-renewable resource because of the
slow growth rate (1 mm/year), coupled with the high rate of destruction and extraction
by anthropic activities [12,17]. They are particularly sensitive habitats to several pressures
and impacts such as maritime traffic, fishery, and sea bottom alteration such as dredging,
abrasion/mechanical damage, water pollution, temperature raising and invasive alien
species [8,18]. In particular, negative effects of fishing trawl activities have been widely
demonstrated: rhodolith/maërl bed are broken and biodiversity decreases [15,19–21].

These pressures and impacts, coupled with long periods of habitat recovery, render the
rhodolith/maërl bed very vulnerable so that it is necessary to implement management and
protection measures to avoid its degradation. Some authors studied the effects of different
fishery management measures to preserve the rhodolith/maërl bed status; in particular,
Consoli et al. [21] indicated fishery spatial restrictions, such as no-take zones, as the more
effective management tool to protect it rather than technical measures (e.g., increase of
trawl net mesh size). Farriol et al. [22] reported signals of recovery of rhodolith/maërl beds
in areas closed to fishery, and demonstrated the effectiveness of no-take zone measures
for the conservation of the habitat. The main conservation and management measures are
found in the Barcelona Convention’s Action Plan, where coralligenous and rhodolith/maërl
assemblages, together with P. oceanica meadows, are indicated to require a granted legal
protection, although it is not legally binding [23]. Moreover, within the European legislation,
the need for protection of this particular habitat has been pointed out in the Habitats
Directive (1992/43/EC) [24], the EC Council Regulation 1967/2006 [25] and the Marine
Strategy Framework Directive 2008/56/EC (MSFD) [26]. In particular, the Habitat Directive,
whose main goal is the conservation of biodiversity through natural habitat and (rare,
threatened or endemic) animal and plant species protection, included the two key species
forming the maërl bed, Lithothamnion corallioides (P. Crouan & H. Crouan) P. Crouan &
H. Crouan, 1867 and Phymatolithon calcareum (Pallas) W.H. Adey & D.L. McKibbin ex
Woelkering & L.M. Irvine, 1986 in the Annex V. However, unfortunately the habitat as such
is not included. The EC 1967/2006, concerning fishery measures for a sustainable use of
the resources in the Mediterranean Sea, banned trawl fishery on the maërl bed. Lastly,
given the ecological importance of the rhodolith/maërl bed and the lack of knowledge on
its presence and status along the coasts, within the Descriptor 1 “Biodiversity” of MSFD,
it was proposed to monitor the rhodolith/maërl bed extent as proxy of the presence and
health status of the protected species L. corallioides and P. calcareum.

Rhodolith/maërl bed monitoring represents the basic tool to implement management
and conservation measures. Unfortunately, the scarcity of relevant geospatial and ecological
data, slowed the effective application of conservation and management measures. In
the last period, rhodolith/maërl bed knowledge was deepened thanks to the extensive
regional-scale monitoring program of MSFD, as well as several research activities carried
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out on it [27–29]. In this context, within the objectives of the Interreg Italia-Malta, named
HARMONY, rhodolith beds in the Strait of Sicily were investigated. In particular, the
rhodolith/maërl bed spatial extent, physical characteristics, and associated macrobenthos
diversity were studied in the Pelagie Islands, according to the monitoring plans developed
in the MSFD.

2. Materials and Methods
2.1. Study Area

The study area is located in the southeast off Lampedusa Island (Figure 1). It is the
largest island of the Pelagian archipelago, located in the Strait of Sicily (Mediterranean Sea).
It is entirely made of sedimentary rocks and shows two main sectors: the northern sector,
with dominant coastal features varying from steep to sub-vertical cliffs, and the southern
sector with the coast gradually sloping down and including several small coves. The south
eastern area off Lampedusa is characterized by a coarse to fine sand bottom with P. oceanica
meadows as the main habitat close to the coast, followed by sandy seabeds at increasing
depth [30].
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Figure 1. Map of Lampedusa study area with indication of sampling sites (S1–S6).

A survey was carried out in May 2019 on board the Research Vessel Astrea of the Italian
Institute for Environmental Protection and Research (ISPRA). This was part of the activities
of the HARMONY project, collecting data on seafloor integrity, rhodolith/maërl bed status
and associated macrobenthic community. The investigations were carried out at depths
from 35 to 100 m, based on literature information [21] as well as on indications provided by
fishermen on the presence of the rhodolith/maërl bed. A sedimentary bottom characterized
by unattached non-geniculate calcareous red algae was considered a “rhodolith bed” when
the coverage was >10% of living rhodoliths and its extension was at least 500 m2 [8].

2.2. Habitat Characterization: Analysis of Acoustic and Video Data

Acoustic data were used to define morpho-bathymetry of the investigated area
(Figure 1) through the Kongsberg EM2040 multibeam system managed by the SIS (Seafloor
Information System) software. Caris HIPS & SIPS 9.1 software (Teledyne, Geospatial,
Fredericton, NB, Canada) was used to process multibeam data, backscatter and the related
mosaic. Multibeam geophysical data were acquired at a frequency of 300 kHz using an
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average swath angle of 60◦, and data acquisition was carried out at an average navigation
speed of about 6 knots. The acquisition strategy involved the execution of 21 parallel tran-
sects, arranged in the NW–SE direction (on average 6 km long) and 6 transects arranged in
the SW–NE direction (2 km long) (approximately 140 linear km of relief). Multibeam and
backscatter data were integrated into ArcGIS v.10.3 software, and were processed in order
to derive the spatial distribution of terrain variables. The shaded relief (hillshade), the
contours (isolines), the angle of slope and the steepest downslope direction (aspect) were
elaborated using the Surface tools into the Spatial Analyst toolbox, and the roughness using
the BTM (Benthic Terrain Modeler). Maps of terrain variables (bathymetry, slope, aspect and
roughness) were obtained with a 1 m grid resolution, for the sediment characterization map
from backscatter data. The distribution of backscatter intensity allowed to distinguish the
granulometric nature of the superficial sediment with a good approximation: high values
of backscatter indicate rocky areas or areas with coarse sedimentation (gravelly–pebbly),
while low values are associated to the presence of medium–fine superficial sediments
(silty–pelitic).

During the surveys, video images and sea-bottom samples were collected as ground
truth information. Video transects were acquired through a Remotely Operated Vehi-
cle (ROV FOII) equipped with a high-definition camera 1920 × 1080, illuminator of
13,000 lumen, two parallel laser beams at the fixed size of 10 cm for the automatic im-
age scale estimation. According to the monitoring protocol of MSFD [31], for each sampling
site (S1–S6) three 200 m long routes (transects) were carried out, at least 100 m distance
from each other. ROV videos were displayed with QuickTime Player vers7 software for
macOS, and a visual assessment of the bottom status was carried out; for each route,
20 video frames were extrapolated at regular time intervals in order to characterize the
rhodolith/maërl bottom.

An assessment of the rhodolith/maërl bed status was conducted from videos and
frames, evaluating the total percentage of cover, the main morphotype coverage (pralines,
boxwork and unattached branches), and the ratio between dead and live thalli [8,32]. A
percent contribution of each morphotype coverage from the videoframes was plotted on
a ternary diagram to show the morphotype variability among the sampling sites. The
vitality of thalli was determined on the base of the observation of rhodolith coloration (pink,
purple, or reddish color) following Bahia et al. [33]. In the presence of a mixed composition
of rhodoliths with bare sand and/or lamellar thalli, their percent of coverage was reported;
furthermore, among the analyzed videoframes, white fragments of calcareous algae were
also encountered in the percent of coverage, because of its importance as substrate for the
rhodolith/maërl bed.

PERMANOVAs were run on the Bray–Curtis similarity matrix of videoframes calcu-
lated on square-root transformed data, to investigate the variation in morphotype com-
position and in live/dead ratio between sampling sites. The analyses were run using
999 permutations of residuals under a reduced model. In case of significant differences
found, PERMANOVAs were repeated to investigate pairwise comparisons between sam-
pling sites. Changes in morphotype composition and live/dead ratio were visualized using
principal coordinates (PCO) analysis on Bray–Curtis similarity matrices. A correlation vec-
tor based on Pearson ranking (>0.6) was overlaid on the PCO to visualize the relationship
among the sites and ordination axes. Statistical analyses were carried out using PRIMER
v6 (Primer–E Ltd., Plymouth) with PERMANOVA add-on software [34,35].

2.3. Biological Communities Associated with Rhodolith/Maërl Bed

According to the monitoring protocol of MSFD [31], for each sampling site, three 25 L
Van Veen grab samples were collected to assess rhodolith/maërl bed vitality and to study
the benthic communities; calcareous algae were placed on a flat surface to identify the
different morphotypes (pralines, boxwork rhodoliths, unattached branches) on the basis of
main morphology, and a percentage of coverage for each of them was estimated. Collected
rhodoliths were cleaned to remove sediment and epiphytic organisms, air dried for at least
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48 h, wrapped in aluminum foil and stored in dark in zipper bags. Epiphytic algae were
stored at −20 ◦C for subsequent analysis.

Sediment samples were used to study the benthic assemblage; they were sieved
through 1 mm sieves and subsequently sorted for the identification of the macrozooben-
thos. All macrofaunal and macrofloral specimens were identified to the lowest possible
taxonomic level and, for macrofauna, estimates of abundance were expressed for each site
as the number of individuals per sediment volume examined. The following diversity
indices were computed for each sampling site: species richness (S), number of individuals
(N), Simpson’s index (D), Evenness (J’), Shannon’s index (H’) and Margalef index (d).
PERMANOVAs were performed to investigate the variation in the benthic assemblage
between sampling sites. A first analysis was carried out on square-root transformed macro-
fauna abundance data, based on a Bray–Curtis sample similarity matrix. The analysis
was run using 999 permutations of residuals under a reduced model. PERMANOVA
was repeated on a macrofauna and macroflora presence/absence dataset, on the basis of
the Jaccard measure. In case of significant differences, PERMANOVAs were repeated to
investigate pairwise comparisons between sampling sites. For both datasets (abundance
and presence/absence), Principal Coordinates analysis (PCO) was calculated on the basis
of the Bray–Curtis similarity matrices among all pairs, and a correlation vector based on
the Pearson ranking (>0.6) was overlaid on the PCO to visualize the relationship among
the sites and ordination axes. Lastly, the functional diversity of the rhodolith/maërl bed
was assessed by grouping species in the following feeding categories: suspension feeders,
deposit feeders, deposit/suspension feeders, grazers, predators, omnivorous and others
(comprising commensals, parasites); species with insufficient information were assigned to
the ‘unknown’ category. Multivariate analysis was conducted to test for differences in the
distribution of the feeding category, as total abundance and as number of species between
sampling sites. All statistical analyses were carried out using PRIMER v6 (Primer–E Ltd.,
Plymouth, UK) with PERMANOVA add-on software [34,35].

3. Results
3.1. Terrain and Textural Analysis of Rhodolith/Maërl Bed

The multibeam survey extended for 26.5 km2, highlighted a poorly articulated seabed
that can be divided into three large areas: a rocky one extending to 50 m depth, a flat one
degrading slowly towards the south–southeast up to 75 m depth, and a third area in the
north east portion of the relief, where the seabed reaches 95 m depth and more rapidly
approaches the limit of the Tunisian continental shelf.

The rocky area was characterized by a large elongated morphological rise extending
southeast for about 1 km, covering an area of about 1.5 km2. This morphological rise creates
a bathymetric height difference of about 20 m towards the northeast (Figure 2a).

Proceeding to the northeast, another morphological rocky outcrop is present at 90 m
depth. From the partial multibeam investigations it is evident that it extends eastwards
for 650 m, causing a bathymetric height difference of about 15 m in the north-northeast
direction (Figure 2a). The areas characterized by the presence of steep morphologies of
rocky origin are highlighted in the slope and aspect maps in Figure 2b,c.

The remaining part of the seabed has a flat morphology, as evidenced in the roughness
map (Figure 2d); only small corrugations of the sediment are present, derived from the
complex geology of the Tunisian passive margin below.

Figure 3a shows the 1 m–resolution acoustic backscatter mosaic (sonogram) produced
by the multibeam system. The backscatter analysis shows that most of the seabed responds
to acoustic diffraction with average values between −12 and −14 dB. A Van Veen bucket
sampling was performed in different areas corresponding to this acoustic interval, which
was found to be characteristic of the rhodolith/maërl bed.

Backscatter identifies the rocky area described above and other areas with low backscat-
ter value corresponding to fine, silty–pelitic particle size, with little or no presence of
rhodoliths; a megaripples/dunes area is evident on the western edge, i.e., sedimentary
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structures indicating the presence of powerful bottom currents and justifying the great
abundance and the large size of the rhodoliths making up the bed.
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Figure 3. (a) Distribution of the backscatter intensity (sonogram) produced by the multibeam system;
(b) simplified classification of sediments in the study area. The circle indicates an area with fewer
rhodoliths; sampling sites are also reported.

The backscatter data show a silty–pelitic particle size distribution (low backscatter)
on the ridges of megaripples and high values in the concave portions. These structures
seem to continue along the entire eastern edge of the relief, but with less intensity and
dimension. Figure 3b shows a preliminary classification of the seabed: almost 80% of the
area is characterized by the presence of rhodoliths, except for the circle sector with a lower
presence of rhodoliths.
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3.2. Analysis of Video Data

Rhodoliths were found throughout the area investigated by ROV, even if with different
percentages of coverage in the six sampling sites (S1–S6). Mean rhodolith cover ranged
from 87% to 99%, including dead and live thalli, with the exception of S1 where the lowest
values of coverage (6.2%) has been reported (Figure 4a,b). The bed was characterized by
the presence of lamellar and encrusting (fouling) calcareous algae such as Peyssonnelia spp.
(Figure 5a), with a percentage of cover ranging from 1 to 25% in S2, S3, S5 and S6. Coverage
of white thalli ranged from 1% to 24% (Figures 4b and 5b), whereas the percentage of live
thalli ranged from 18% to 98% with a mean value of 74%. The percentage of the three
different morphotypes in the six sampling sites was highly variable among transects. It has
been represented as a box plot in Figure 6a and in the ternary plot of Figure 6b. The most
dominant morphotype was boxwork, except for S1 where pralines dominated; S3 showed
the greatest morphotype variability.
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Figure 5. ROV image of lamellar thalli (a,b) in S3 sampling site and white ones in S2 (c) and S5 (d)
sampling sites, among the rhodolith/maërl bed in Lampedusa Island.

The PERMANOVA performed on the morphotype dataset showed significant differ-
ences between sampling sites (Pseudo–F = 43.994; p < 0.01). Pairwise comparisons were
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all significantly different, except for S2–S4 and S5–S6. The Principal Coordinates analysis
(PCO) explained 81.8% of the variation in the data, with PCO1 axis explaining 50.6% and
PCO2 axis 31.2%. S1 is separated along the PCO1 axis, while transects are separated along
the PCO2 axis (Figure 7a). PERMANOVA performed on the dead/live dataset, including
bare coverage, showed significant variability between sampling sites (Pseudo–F = 152.26;
p < 0.01). Pairwise comparisons were all significantly different except for S3–S4, S3–S5 and
S5–S6. Differences in dead/live ratio are visualized on the PCO graph; the 85.5% of the total
variation was explained by the PCO1 axis, along which S1 separates. “Bare” correlation
vector explains this diversity (Figure 7b).
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3.3. Benthic Community Structure

Boxwork was the most represented morphotype in the grab samples, except for the S1
and S6 sampling sites, as is evident in the ternary plot (Figure 8); visual inspection detected
a cover of live rhodoliths ranging from 85% to 100%.

The classification of the macrobenthos from grab samples allowed to identify a total
of 206 taxa, the most diverse of which were Polychaeta (74 taxa) and Crustacea (60 taxa),
followed by Algae (29 taxa) belonging to Ochrophyta and Rhodophyta, Mollusca (27 taxa),
Pycnogonida (8 taxa), Echinodermata (6 taxa), Sipuncula (1 taxon) and Chordata (1 taxon)
(for the list of the species, see Table S1).
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In terms of abundance, a total of 875 specimens belonging to 177 animal taxa were
collected. The most abundant taxonomic groups were Polychaeta and Crustacea, with
342 and 345 specimens, respectively. The rarest taxonomic groups were Sipuncula and
Chordata, with only one species each (Phascolosoma granulatum and Branchiostoma lanceola-
tum, respectively) and represented by eight and three individuals, respectively. The most
abundant taxa were two Crustacea, the amphipod Linguimaera caesaris with 56 individuals
(~6% of all individuals) and the isopod Joeropsis sp. with 38 individuals (~4% of the total).
The lowest number of species was found at S1, and the lowest macrofauna abundance was
recorded at S1 and S2 (Table 1).

Table 1. Traditional biodiversity indices of the six sampling sites. S: number of species (including
macrophytes); N: number of specimens; D: Simpson index; J’: Pielou index; H’: Shannon index; d:
Margalef index. Indices marked with * are calculated for macrofauna only.

Sampling Site S N * D * J’ * H’ * D *

S1 29 42 0.96 0.93 3.10 7.22
S2 53 89 0.98 0.94 3.66 10.69
S3 100 190 0.98 0.93 4.13 15.82
S4 83 170 0.98 0.93 3.97 13.44
S5 99 198 0.97 0.90 3.95 14.75
S6 90 186 0.98 0.91 3.90 13.40

PERMANOVA showed a significant variability on the macrofauna species abundance
between sampling sites (Pseudo–F = 1.4288 p < 0.01). All pairwise comparisons were not
significantly different. Multivariate analysis based on the macrofauna and macroflora
dataset revealed significant differences between sampling sites (Pseudo–F = 1.6239 p < 0.01).
All pairwise comparisons were not significantly different. PCO explained the 25.1% of
the variation among sampling sites considering species-abundance data, and the 28.5%
considering macroflora and macrofauna data (Figure 9).

Regarding the trophic group analysis, the most represented group in terms of species
and individuals was that of deposit feeders followed by predators; deposit/suspension
feeders and grazers were the less-represented trophic groups (Table 2). The crustacean
isopod Joeropsis sp. was the most abundant deposit feeder, whereas the polychaetes Glycera
alba and Schistomeringos rudolphi were the most abundant predators. PERMANOVA among
trophic groups, both in terms of abundance and number of species, showed significant
variation between sampling sites (Pseudo–Fabundance = 2.57 p < 0.05; Pseudo–Fn species = 2.99
p < 0.05).
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Figure 9. Principal Coordinates Analysis (PCO) ordination plot of the sampling sites related to
macrofauna abundances among sampling sites (a) and related to macrofauna and macroflora presence
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Table 2. Number of species and individuals for each trophic group.

Trophic Group N Species N Species % N Individuals N Individuals %

Grazer 9 5.3 48 5.8
Suspension feeder 34 20.0 118 14.2
Deposit feeder 51 30.0 262 31.6
Deposit/suspension feeder 5 2.9 78 9.4
Omnivorous 12 7.1 88 10.6
Predator 43 25.3 188 22.6
unknown 15 8.8 47 5.7
other 1 0.6 1 0.1

4. Discussion

The geophysical–geomorphological analysis allowed to map the sea bottom of the
study area, revealing an articulated and wide rhodolith/maërl bed in the southeast area
of Lampedusa Island, an area not previously investigated. The ROV survey confirmed
the presence of the rhodolith/maërl bed and contributed to the habitat characterization,
together with the analysis of benthic communities. Information provided by the three
complementary techniques allowed to broaden the knowledge on the distribution and
morphotypes composition of Mediterranean rhodolith/maërl beds, as well as providing
an inventory of the associated benthic species in the Strait of Sicily. This area is a mosaic
of different habitats and is considered an important biodiversity hot spot and crossroad
in the Mediterranean Sea [36], being a spawning and nursery area for many commercial
species [37], as well as a foraging area for predators such as the loggerhead sea turtle [38].

The rhodolith/maërl bed offshore Lampedusa Island is characterized by a rhodolith
cover (>87%) higher than other Mediterranean rhodolith/maërl beds, where maximum
values vary between ~55–66% in the Tyrrhenian Sea [25,39], ~43% in the Adriatic Sea, and
~66% in the Ionian Sea [40]. Furthermore, it is characterized by high percent coverage of
live rhodoliths (not less than 70%) (Figure 10a), and rare sandy patches with low percent
coverage of live rhodoliths (Figure 10b), as confirmed by backscatter results (Figure 3b)
and videoframes analysis. In some cases, uncovered portions with white fragments of
calcareous algae have been recorded; this substrate constitutes the organogenous base of
the living rhodolith/maërl bed. This overall scenario highlighted the good health status of
the bed, although furrows probably left by trawling were at times detected, suggesting that
the area is subjected to anthropic pressures (Figure 10c).
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Boxwork was the most represented morphotype in the Lampedusa rhodolith/maërl
bed, formed by the concretion of different overlapped algal species with numerous cavities
filled by sediment; the dominance of boxwork morphotype is usually found in areas at low
hydrodynamic regime [27,41]. Instead, branch and praline morphotypes accounted for a
minor percentage, heterogeneously distributed within the sampling sites. In general, the
distribution of rhodoliths is controlled by a combination of many environmental variables
like temperature, salinity, irradiance, nutrients and water chemistry [42,43], as well as
hydrodynamic regimes influencing the morphotype composition [35].

The studied rhodolith/maërl bed was also characterized by the presence of lamel-
lar thalli mainly belonging to Peyssonnelia spp., indicating the occurrence of the facies
of Peyssonnelia rosa–marina which is mainly present on fluid or mobile mud in turbid
currents [44,45].

Overall, the examined bed was characterized by a rather diverse benthic assemblage,
although it was relatively poor in macroalgal elements. Macroalgae, in fact, accounted for
~14% of the whole macrobenthic community in terms of number of taxa, while in the nearby
Maltese bed was ~26% [7] and at Ustica Island (Southern Tyrrhenian Sea), 117 macroalgal
taxa were found at comparable depths [46]. The epiflora found in Lampedusa Island
showed the dominance of Rhodophyceae, confirming the ability of this group to adapt to
great depths. Crustose algae and algae with coriaceous thalli, resistant to mechanical and
biological disturbances like Pneophyllum confervicola, Zonaria tournefortii, Cutleria chilosa,
Hydrolithon farinosum, Osmundaria volubilis, Peyssonnelia dubyi, were the most frequent.

The benthic assemblage was characterized by high biodiversity, except for the macroal-
gal component, and significant differences between sampling sites were found. Although
pairwise comparisons were not significantly different, the species richness and number of
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specimens in sampling site S1 were lower than in the other sampling sites (Table 1). The
presence in S1 of a large sandy patch almost completely devoid of rhodoliths, could be also
responsible for the low algal biodiversity and the different macrobenthic assemblage com-
pared to the other sampling sites. As already demonstrated by many authors, the presence
of rhodoliths increases species richness and diversity in the benthic community [32,47,48]
because of the creation of new microhabitats within and around the rhodoliths for many
species. Sites with such high biodiversity can support high macrobenthic secondary produc-
tion, and consequently affect the diversity and productivity of marine ecosystems [49,50].

The rhodolith/maërl bed biodiversity was mainly represented by Polychaeta and
Crustacea as already discovered in other Mediterranean beds [28,51], as well as in Southern
Australia [52], unlike the Atlantic ones where Crustacea dominated [53]. Furthermore,
the high biodiversity was coupled with a greater abundance and dominance of deposit
feeders and predators; the high species diversity of deposit feeders and predators might
lead to the hypothesis of niche diversification among deposit feeders and richness of prey
organisms for predators. This confirms what was reported by many authors, namely that
the rhodolith/maërl bed, being a key point of energy and matter fluxes, contributes to the
maintenance of marine biodiversity [54–57].

The macrozoobenthic assemblage of the studied rhodolith/maërl bed was composed
of species belonging to different biocoenoses, the most represented being coastal detritic
(with the species Ditrupa arietina, Ebalia edwardsii, Modiolula phaseolina, Petta pusilla, Urothoe
elegans, Vermiliopsis infundibulum) and Coarse Sand and Fine Gravel under Bottom Current
(with the species Branchiostoma lanceolatum, Venus casina) [58]. In fact, in the Mediterranean
Sea, rhodolith associations and maërl facies are commonly found in infralittoral and
circalittoral zones as part of coastal detritic and Coarse Sand and Fine Gravel under Bottom
Currents [8,10].

The study of the benthic assemblage has also allowed the identification of non-
indigenous species, considered as putative pressure on the rhodolith/maërl bed. Remark-
able is the presence of the amphipod Linguimaera caesaris, the most abundant species of the
overall macrozoobenthic assemblage. This species is a Lessepsian immigrant and it has
been previously reported for Egypt, Israel, Libya, Türkiye 1, Cyprus, and Tunisia [59–63],
sometimes as Maera hamigera or Hamimaera hamigera due to taxonomic misunderstandings.
The species has not yet been included in the inventory of non-indigenous species for the
Italian seas under the Marine Strategy Framework Directive [64]. Given the high number of
individuals found, as well as the wide distribution of this species along the rhodolith/maërl
bed, it is possible to consider L. caesaris as established. To date, the impact of this species on
the benthic community is not known; however, its important presence compared to that
of native species should represent a stimulus to consider an adequate monitoring of the
rhodolith/maërl bed benthic community, in order to deepen the knowledge on the ecology
of the species and possibly adopt management and conservation measures.

The spreading path of this species in the Mediterranean, on the one hand along
the Levantine waters northward to the Aegean and on the other along the Southern
Mediterranean coast in a westerly direction, agrees with the main route of other Lessepsian
species range expansion [62,65]. Since this species (like other benthic amphipods) does
not have pelagic larval stages, it can be assumed that it has reached Lampedusa Island via
passive dispersal, probably from near Tunisia. Another Lessepsian species, the polychaete
Notomastus aberans, is also present but in very low abundance.

Other abundant species of the macrozoobenthic assemblage are the gravellicole sea
urchins Sphaerechinus granularis and Echinocyamus pusillus, together with species with a
wide range of habitat preferences like Glycera alba, Apseudes talpa, Cheirocratus sundevalli,
Lysidice ninetta. Such an assemblage is comparable to that found in other Mediterranean
rhodolith/maërl beds, which include species typical of different biocoenoses [28,66].

To date, no species uniquely associated with rhodolith/maërl beds have been iden-
tified, but rather species found in the beds have diverse habitat preferences or belong to
gravel communities. For this reason, some authors have stated that rhodolith/maërl beds
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are characterized by a core set of species with high abundance and well-adapted to the high
hydrodynamism, and some rare and less abundant species, more related to small-scale
spatial patchiness [67].

In the Mediterranean, due to the great depths of rhodolith/maërl beds, the associated
benthic community has received relatively little attention, although in the last years the
studies have increased [28,68,69]. The study of their biodiversity has proved important to
validate the health status of the bed, as well as to construct a species inventory baseline for
future monitoring activities.

Notwithstanding the great biological importance of rhodolith/maërl beds as reservoirs
of biodiversity, they suffer a variety of anthropogenic disturbances in the Mediterranean
that include impacts due to fishing and chemical pollution by organic matter and excess of
nutrients. From an ecosystem perspective, actions for their management and conservation,
such as bans on the use of towed gears on rhodolith/maërl beds and measures to limit the
impacts on water quality above rhodolith/maërl beds, should be greatly recommended. A
higher conservation status for rhodolith habitats and maërl-forming species should also
be considered in European legislation, as well as the designation of “no-take” reserves.
Whatever management strategy is adopted, a program to monitor the “health” of European
rhodolith/maërl beds and further research on this delicate habitat are fundamental for the
conservation of this important ecological resource.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jmse10121808/s1, Table S1: List of species/taxa detected on Lampe-
dusa rhodolith/maërl bed.
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